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Overview of Presentation
I EEEEEa

m Introduction
— status of Si-based computing
— potential DoD needs

m Molecular Electronics
— concept and key advantages
— critical issues
m Carbon Nanotube Molecular Computer
— key features of carbon nanotubes
— underlying ideas for electronics
— design analysis
— approaches to fabrication
— expected performance

m Conclusions



Silicon Based Electronics
I EEEEEa

It is expected that the exponential growth in Si-based
computing power will come to an end about 2010 dueto
both fundamental and economic reasons:

m fundamental physical limitations will be reached for
device elements and wire interconnects that prevent
reliable function of present designs.

m the concurrent exponential cost in FAB lines with
decreasing feature size will make it uneconomical to
consider further integration (in ).



Molecular Electronics
I EEEEEa

m Molecular based electronics can overcome the fundamental
physical and economic issues limiting Si technology.

m First, it is physically possible to have single molecule
devices.

m Second, massively paralel organization of molecular or
nanoscal e elements can be achieved (cheaply) by self-
assembly and chemical synthesis.
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Molecular Electronics: Critical | ssues
I EEEEEa

m What systems can be used to address large numbers of
molecular devices, and how can these be organized into
high-density two and three-dimensional arrays?

m \What device types can provide bistable operation and how
can these be connected in large number to input/output
lines?

m \What device types can provide bistable operation and how
can these be connected in large number to input/output

lines?
These critical challenges can be overcome
using carbon nanotube based e ectronics!



Why Carbon Nanotubes?
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Single-walled car bon nanotubes possess
critical features needed for molecular
electronics:

m molecular-scale wires of atomic
perfection b input/output; integration
at 102 (2D) and >10'° (3D)

m controllable chemical properties b
assembly; synthesis of devices

m stiffest and toughest known material
b small devices can be robust;
potential molecular MEMs




Nanotube Molecular Electronics
I EEEEEa

m SWNT molecular wires can 2D SWNT Array
be organized into 2D arrays
analogous to, for example, -

word/bit linesin silicon
memory devices.

m At eachjunction or cross, a
device must be created. In a Si Device Element Nanotube Devica

Si-DRAM, the device Wi~ T
consists of atransistor and T, P
capacitor. What can be R -

created for nanotubes? |

D




Nanotube Device Concept
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A conceptually ssimple bistable device N (ol )
can be achieved for a suspended N
crossed nanotube geometry: OFF

m the OFF state corresponds to
mechanical equilibrium |
m the ON state correspondsto

Van der Waals contact |

m switching can be achieved
electrostatically by biasing the
nanotubes (e.g., +/- or +/+).

m the static potential and
switching voltages can be
determined by evaluating the
total energy:

Er =Egas + Evaw T Eaec
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Design Analysis: Static Potential
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m Devicebistability can
be evaluated by
analyzing the static
potential for the crossed
nanotube geometry.

m For a length between
suspension points of 15
nm, two well-defined
minima (i.e., bistable)
are observed for
separations of 0.85 to
1.45 nm.
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Design Analysis. Device Switching
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Joules

m The switching threshold for the - /
nanotube device is determined (A) /
by evaluating the electrostatic '
contribution to the total energy:
Er = EBgae * Bvaw + Baec

m Switching off is done by
biasing the crossing nanotubes
with the same polarity
(repulsive), so that they move
toward mechanical equilibrium.
Switching on is done by biasing
with opposite polarity, so that
they are attracted toward a
stable van der Waals contact.

m A switching threshold of 4-5V
|S aChleVable 075 0.55 065 hm

\ Switching Of f




Nanotube Electronics: Performance
I EEEEEa

m Device Integration Levels
* 1012/cm?in 2D
* > 10%/cm3in 3D

m Operating Speed (RC)
* at least 10-100 GHz

m Power Reguirements

* < 4UW average power (vs. >100 mW for S
DRAM)



